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GENERALIZED FORM OF THE EQUATION OF STATE OF REAL GASES 

V. I. Nedostup and E. P. Gal'kevich UDC 536.71 

A simple and reliable equation of state is proposed on the basis of an analysis 
of the geometric structure of the thermodynamic surface. A three-parameter pro- 
cedure for generalizing the properties of a wide range of nonpolar gases is vali- 

dated. 

One of the most important conditions for the successful use of the theory of thermo- 
dynamic similarity to calculate properties of little-studied gases is the existence of a 
physically sound equation of state common to the materials being considered which has a form 
giving the correct configuration of thermodynamic surfaces in the range of parameters being 
investigated. 

To construct the equation of state corresponding to the condition indicated above we 
investigated the thermodynamic surfaces of a large number of technically important gases. 
The equation of the state surface can be written in the general form 

x = Xo(T) + ~X(T, p), (1) 

where Xo(T) is the ideal-gas component of the property X and &X(T, p) is a function which 
takes account of the difference between the properties of the real and ideal gas. The latter 
can be written in the form of a virial series. Then when X = pV, Eq. (I) has the form 

pV = RT + RTB9 + RTC~ + . . . .  (2) 

Lines on the state surface along which the properties of a real gas coincide with those of 
an ideal gas at those same temperatures are called ideal curves. These include curves Of 
minima on isotherms of various properties (3AX/~p)T = 0 (Boyle, inversion, Joule curves), 
ideal curves AX = 0 (curves of an ideal gas, ideal enthalpy, ideal internal energy). 

In spite of the different meaning which is commonly inserted into the definitions of 
these properties (thermal, caloric) they have a number of common, not always obvious, regulari- 
ties which are manifested only in the combined processing of experimental data. We have 
noted'[2] that the ideal curves gpV = 0, AH = 0, AU = 0 in the coordinates (T, p) are iso- 
morphic, i.e., they are characterized by the repetition of configurations; the same applies 
to the curves (~ApV/3p) T = 0, (3AH/~p) T = 0, and (~bU/3p) T = 0. In addition, ideal curves 
of various properties are connected by thermodynamic relations which result from the coin- 
cidence of the lines ApV = 0 and (~AF/~p) T = 0, (3ApV/3T~p = 0 and (~AU/3p)T = 0, (3AH/~P)T = 
0 and (3ApV/3T)p = 0. In addition, it should be noted that the ideal curves AX = 0 are rec- 
tilinear in the coordinates T~ p, and when extended to T = 0 intersect at the common density 
po [i], which as shown by one of the authors [i0] can be identified with the density of the 
ideal unstressed crystal at 0~ And finally, the most important fact: the curves ApV = 0, 
AH = O, AU = 0 belong to the extensive family of curves which satisfy the condition [i] 

[ApV.T"I~= O, (3) 
OT 

o r  

I ( O A p V )  ApV 
n 0T p= T ' (4) 
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Fig. i. Ideal curves To(n) = const 
on the state surface of argon accord- 
ing to data of [9]: i) T = 602~ 
2) 564.6; 3) 526.1; 4) 490.6; 5) 
445.8; 6) 407.8; 7) 367.6; 8) 326.7; 
9) 285.4; i0) 243.1; ii) 201.8~ 

where n is a parameter which is constant for each curve. This is easy to see by using (2) 
and (4) to write 

T dB 

n + 1 dT (5)  

f r o m  w h i c h  i t  i s  c l e a r  t h a t  n = -+~ c o r r e s p o n d s  t o  t h e  c u r v e  f o r  a n  i d e a l  g a s  h a v i n g  t h e  B o y l e  
t e m p e r a t u r e  (B = O) a t  i t s  o r i g i n ,  a n d  n = --2 g i v e s  t h e  c o n d i t i o n  f o r  t h e  t e m p e r a t u r e  i n v e r -  
s i o n  dB/dT = B / T ;  s i m i l a r l y  f o r  n = --1 dB / dT  = 0 (~U = 0 ) .  F o r  o t h e r  v a l u e s  o f  n ( b o t h  n e g a -  
t i v e  and  p o s i t i v e )  c o n d i t i o n  (4)  c o r r e s p o n d s  t o  a n  i d e a l  c u r v e ,  a s  c a n  b e  s e e n  by  r e w r i t i n g  
Eq.  (4)  i n  t h e  f o r m  

T--~-7o(OP)+nP=RTp+nRTp, (6)  

where RTp is the pressure of an ideal gas. The above noted relations which are characteris- 
tic for the curves AX = 0 are also valid for these curves [2]; i.e., the equation of curves 
(4) in the coordinates T, P has the form 

r = To (n) (1 --P/Po). ( 7 )  

On the other hand, since there are no restrictions on the choice of the values of the vari- 
ables T, p, and n, we can conclude that Eq. (4) is one of the forms representing a thermo- 
dynamic surface consisting of the family of ideal curves (4). In subsequent arguments in- 
stead of the parameter n we shall use the quantity To = T/(I -- P/Po), which is constant along 
a line on the state surface characterized by Eqs. (4) and (6). 

An analysis of experimental data on a large number of well-studied gases (the inert 
gases, CO~, N2, CH4, C2H6, and many others) showed that the lines for a constant value of To 
are rectilinear in the coordinates pV, P (ApV, p) (Fig. i). This fact permits a nontrivial 
conclusion to be drawn about the geometric structure of the thermodynamic surface. 

Since the observed features are characteristic over the whole range of parameters of 
the gaseous phase, and the state surface of nonpolar gases can be represented as a family of 
ideal curves, i.e., each point of the surface lies on an ideal curve characterized by its 
values of To and the density po which is the same for all curves, the rectilinearity of the 
ideal curves shows that the thermodynamic surface in the coordinates (ApV, T, 0) is a ruled 
surface. The equation of state of a real gas having such a ruled surface can be obtained 

from (2) by introducing into it Eqs. (3) and (7). 

Omitting some simple transformations, we write finally 

PV----RT[ I+B(T~ 1--P o]p/p (8) 

or, introducing the dimensionless quantities Z = pV/RT, 0 = To/TB, ~ = p/po, B* = BOo, 

0) 
Z = 1 + B* ((9) ( 9 )  
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As a result of choosing the reduced density po as a parameter, all the ideal curves in the 
coordinates (T, m) have their origin at the point m = i. 

As a consequence of this form of the equation of state stringent demands are imposed on 
the accuracy of B , yet the values of the second virial coefficient for a rarefied gas de- 
termined from Eq. (2) admit an appreciable arbitrariness as a result of the small value of 

the density, which is then compensated by the arbitrariness in the determination of the higher 
virial coefficients. Therefore, the problem of setting up the equation of state in the form 
(9) is reduced to that of determining B~ as a function of @ with an error of 0.1-0.2%. For 
well-studied nitrogen an equation of state in the form (9) was set up with T B = 325.68~ 

po = 1125.3 kg/m ~, and B*(@) = 1431.2135 + II.703751(I/e) --1956.5272(1/8) 2 --170.84099(i/e)3+ 
1316.0277(i/e) 4 --808.62325(i/e) S + 193.33084(i/8) 6 --16.396136(i/e) 7 describing the data of 
[3, 4] with an error, except for a rare exception, not exceeding 0.5% in the IO0-1000~ range, 
and up to a density of the order of 2.0pk. Similar results obtained for Ar, COs, and CH4 
lead to the conclusion that this form of the equation of state is universal for materials 
of simple molecular structure with a zero or small dipole moment. 

In speaking of the similarity of a group of gases whose thermodynamic surfaces exhibit 
the above-mentioned regularities and are described by Eq. (9), it must be remembered that 
ruled surfaces are affine. The characteristic feature of such a surface is that for 8, m = 
idem, straight lines identified with the ideal curves (3) coincide for equal values of the 
coordinates of the origins and slopes. In the present case the coordinates of the origins 
are ApV = O, m = O, and the slope is 

= ~eB* (e) (i0) 

Thus, the problem is reduced to that of obtaining identical values of B*(@) for the same 
values of @. By writing the second virial coefficient in terms of the notation introduced: 

B*(O)=-- ~-2 ~Np o! exp @ , -- I r2dr, (Ii) 

where q~*=qL/kTB, it follows that this is possible only if the intermolecular potentials of 
the interaction of the materials being compared are conformal with respect to the potential 
parameters which are uniquely related to the temperature T B and the density po. 

It is appropriate to compare Eq. (8) with-van der Waals equation, whichgives qualita- 
tively all the above noted characteristics of the ideal curves (3). From van der Waals equa- 
tion in the form pV = RT/(I -- bp) -- ap for To = T/(I - bp) = const, we obs 

( = -a-p-] ?o -- a, (12) 

i.e., the ideal curves (3) in the coordinates (pV, p) are parallel. Similarly from (8) we 
find 

B I 
k 0p /T, \ ----~-o / 

from which it follows that the difference between a real and a van der Waals gas can be re- 
duced to the difference in slopes of their ideal curves in (pV, p) coordinates. In addition, 
by comparing Eqs. (12) and (13) and taking account of the physical meaning of the quantities 
appearing in them, it can be seen that the slope of the ideal curves is determined by the 
attractive part of the interaction potential. Hence it follows that the similarity of a broad 
range of real gases is related primarily to the conformity of the part of the potential de- 
scribing the attraction between molecules. The arguments presented are additional evidence 
of the validity of the conclusions reached in [5]. 

On the basis of independent considerations it was shown in [6, 7] that in choosing T B 
and Po as reference parameters the equations of state of the material being investigated (sub- 
script i) and the reference material (subscript r) for @ and m = idem, can be written in the 
form 

AZ i = AAZ r, 

where according to (9) the similarity parameter 

(14) 
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TABLE i. Value of Similarity Parameter A along Boyle Curves 

I Ar [ x=0.273310,524410,7318j x=0,27703 
I o.: ks/m, 

i 
, 'TB.--~ 

=I 

0,4~ o,93 0,91 1,05 11,0511,15 1,I0 1,2710,971 
0,~ 0,~I0,91 1,0411,09 [1.15 ~,m 1,2SlO,~ 
o,so 0.9310,91 |,04 li.04 1.14 1,15 I,~]0,~ I~ 
0,52 0,9310,91 1,04 ] 1,05 - -  - -  1,25 t 1,00 1,06 
o.s4 0,9310,m 1,03 J !,04 1,2510,~1 1,05 

l,~]o,~ml 1,o7 0,56 0,9310,91 1,03 I - -  
0,~ 0,9310,91 ,_02 1.24 ~ 11'~ 
0,56 0,9210,91 ~ 1,06 
0,70 0,93 0,90 ~ 1,05 

A 0,93 0,91 I ]1 ,05  1,15 1,16 l ] 1,06 

A = ~? (o) 
~; (o) 

! ,~ ,  1,5,  I ,=6 

- , . ,  I,~.,91 ,3 . ,  

- - [  - 

- -  I ~ 8  

I~4 I, 18 
1,03 1,17 
1,04 1,18 

�9 1,05 1,17 
1,05 
1,05 
1,02 

1,04 1,18 

(15) 

in general can depend on @. However, in the theory of L. P. Filippov [5] based on calculations 
with an atom-atom potential model it is found that the parameter A, related to the noncon- 
formality of attractive potentials, must be a constant characteristic of the molecular struc- 
ture. In this case the relative value of A is considered for the materials under study; the 
parameter A is taken equal to i for the reference gas nitrogen. We investigate the charac- 
ter of the variation of the similarity parameter A along particular lines on the state sur- 

face. For a Boyle curve (~Az/~)T = 0 we find from Eq. (ii) 

AZ B.c = _ 0 dB* (0) o~ 
dO 1--~'  

i.e., 

(16) 

(17) 

A = AZjB'c (dB*/dS)i 
AZo ~c - (riB*/de)r" 

Similarly on an inversion curve (@AZ/@T)p = 0 and 
I 

do ~-o~ j 

a = (d_e*/de_), + ~o (mP/~e,~, 
(dS*/de) r + ~O (a:B*Id~)r 

It follows from Eqs. (15), (16), and (17) that for 0, m = idem the parameter A is inde- 
pendent of 0 and co. This can also be deduced by investigating the equations for dimension- 

less values of the enthalpy and internal energy: 

A___H_H = eB* (e) -- 2~B* (e) + ~B* (e)e=~ , (18) 
RrB 

AU 
- -  = TB* (%) -- B* (O)e=~. (19) 
RrB 

We have calculated the values of A for a number of materials by using the data of [8] 
along Boyle curves (Table i). Well-studied nitrogen was taken as a reference material. It 
is clear from Table i that the variation of A along Boyle curves is negligible; i.e., with 
the average values of this parameter listed in the last row the thermodynamic surfaces of 
the gases considered can be described to an acceptable accuracy. 

In conclusion it should be noted that since the similarity parameter is independent of 
@ and ~ it can be determined from limited information on the thermodynamic properties of sim- 

ple nonpolar gases. 

1216 



NOTATION 

T, temperature; p, pressure; V, volume; p, density; R, gas constant; B, second virial 
coefficient; H, enthalpy; ~U, internal energy; r, intermolecular distance; ~, intermo!ecular 
potential function. 
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TEMPERATURE DISTRIBUTION IN A ROTATING HOLLOW CYLINDER 

I. A. Ignashov and V. A. Bystroumov UDC 536.24.02 

The temperature distribution in a hollow cylinder rotating with a given angular 
velocity is found for steady-state boundary conditions of the first kind. 

We consider an infinitely long cylinder whose radial cross section is a doubly connected 
region S bounded on the outside by contour L (a circle of radius R) and on the inside by con- 
tour Lo (a circle of radius Ro). A certain portion of the outer surface of the cylinder is 
in contact with a strip of hot metal translating with a velocity V. As a result of the con- 
tact with the moving strip the cylinder rotates about a fixed axis with an angular velocity 

= V/R. The cylinder receives heat by contact, convective, and radiant heat transfer. At 
time t = 0 when the thermal process begins, a liquid enters the channel of the cylinder under 
turbulent conditions and maintains the temperature of the inner surface constant. The tem- 
perature on contour L at t = 0 is established instantaneously and does not change with time 
in the XOY system (Fig. i); the initial temperature in the volume of the cylinder is assumed 
constant. It is required to find the temperature distribution in the cylinder at any time 
t>O. 

The temperature at the boundary is a continuous periodic function of points on contour 
L, and can be represented in the XOY system by a Fourier series: 

0 (1, ~) = 0 + ~f~ [~. sin (n~) + ?~ cos (n~)l, (1) 
n ~ l  

O(po, qD)= 0,; O(p, ~p, Fo)leo=o = Oz. (2) 

The required temperature which satisfies boundary condition (i) and the initial condi- 
tion (2) is determined by solving the heat-conduction equation 

az~ 1 OO 02@ OO O@ 
- -  + ---- 6 ----Pd q--- (3) 

ap 2 p a@ pZaq~z aqo a Fo 
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